REPORT OF

PRODUCT SAFETY EVALUATION

CONDUCTED ON

FIBERGLASS & IMPACT RESISTANT ACRYLIC SKYLIGHT DOMES

FOR

BRISTOLITE SKYLIGHTS
401 E. GOETZ AVENUE
PO BOX 2515
SANTA ANA, CA 92707

ATTENTION: MR. CARL SCHMIDT

REPORT PREPARED BY

INTERTEK TESTING SERVICES NA LTD.
WARNOCK HERSEY
211 SCHOOLHOUSE STREET
COQUITLAM, BC V3K 4X9

REPORT NUMBER: 3028364

DATE: AUGUST 19, 2002
REVISED DATE: AUGUST 30, 2002
TABLE OF CONTENTS

TABLE OF CONTENTS ... 1
PREFACE .. 2
INTRODUCTION ... 3
PRODUCT DESCRIPTION .. 3
TEST PROCEDURE .. 4
TEST RESULTS .. 5
CONCLUSIONS .. 6
APPENDIX A - PHOTOGRAPHS ... 1 page
APPENDIX B - DATA SHEETS ... 3 pages

REVISION TABLE

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Revision Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 30, 2002</td>
<td>Throughout entire report</td>
<td>Addition of description of the materials tested - Impact Resistant Acrylic</td>
</tr>
</tbody>
</table>
PREFACE

All services undertaken are subject to the following general policy:

1. This report is for the exclusive use of Intertek Testing Services NA Ltd.’s (ITS’s) client and is provided pursuant to the agreement between ITS and its client. ITS’s responsibility and liability are limited to the terms and conditions of the agreement. ITS assume no liability to any party, other than to the client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report.

2. Only the client is authorized to copy or distribute this report and then only in its entirety. Any use of the ITS name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by ITS.

3. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product or service is or has ever been under an ITS certification program.
INTRODUCTION

At the request of Carl Schmidt of Bristolite Skylights, product safety tests were conducted on one fiberglass and two impact resistant acrylic skylight domes. The testing was to be conducted in accordance with the United States Occupational Safety and Health Administration Department of Labour (OSHA) regulations for Fall Protection Systems Criteria and Practices (1926.502).

In order to evaluate the skylight domes against this standard, the following testing methods were employed:

PRODUCT DESCRIPTION

The external dimensions of the skylight domes are shown in Table 1 below.

<table>
<thead>
<tr>
<th>ITS Identification</th>
<th>Manufacturer Designation</th>
<th>Width</th>
<th>Length</th>
<th>Target Dome Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skylight 1</td>
<td>4896-HRS-CM</td>
<td>4'</td>
<td>8'</td>
<td>1/4''</td>
</tr>
<tr>
<td>Impact Resistant Acrylic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skylight 2</td>
<td>6072-ES-CMG</td>
<td>5'</td>
<td>6'</td>
<td>1/8''</td>
</tr>
<tr>
<td>Fiberglass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skylight 3</td>
<td>6072-HRS-CM</td>
<td>5'</td>
<td>6'</td>
<td>1/4''</td>
</tr>
<tr>
<td>Impact Resistant Acrylic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TEST PROCEDURE

To carry out the uniformly distributed load testing, a double-height box frame was constructed from 2" x 6" standard planed lumber for each of the skylight domes. The frames were designed so that the skylight domes would fit tightly over the outer face of the frames, simulating actual construction use. The dimensions of the box frames are shown in Table 2 below. An inlet and outlet hole was cut on the outer face of each frame to allow a negative pressure to be drawn from the dome and frame assembly. The inlet valve was controlled by means of a 2" gate valve. To produce a uniformly distributed load, the skylight dome and frame chamber were sealed so that a negative pressure could be drawn using a vacuum pump. Each skylight dome was subjected to a proof load of 40 psf for five minutes. The equipment used for the measurement of pressure included:

- 36" 'Dwyer' manometer – ITS identification 52613
- 150" 'Dwyer' magnehelic – ITS identification 9-0345

<table>
<thead>
<tr>
<th>ITS Identification</th>
<th>Width</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skylight 1 Impact Resistant Acrylic</td>
<td>4' 3.5"</td>
<td>8' 3.5"</td>
</tr>
<tr>
<td>Skylight 2 Fiberglass</td>
<td>5' 3.5"</td>
<td>6' 3.5"</td>
</tr>
<tr>
<td>Skylight 3 Impact Resistant Acrylic</td>
<td>5' 3.5"</td>
<td>6' 3.5"</td>
</tr>
</tbody>
</table>

To perform the concentrated load testing, a wooden lever device was constructed to manually apply a proof load of 200 lb. and a 400 lb. load applied as a two times safety factor as outlined in the OSHA Standards 1926.502(i) (3). A load cell and a 3" diameter plate were fitted in series to the end of the lever to enable the correct loading to be applied. The equipment used for the measurement of weight included:

- 500 lb. 'Artech' load cell – ITS identification 52646
- 'Data Shuttle' interface – ITS identification 9-0429
- Work Bench software program.
TEST RESULTS

The uniformly distributed and concentrated load test results are summarised in Table 3 below. A more detailed description of the test results and photographs of the tests in progress are shown in Appendices A and B respectively.

<table>
<thead>
<tr>
<th>ITS Identification</th>
<th>Uniformly Distributed load of 40 psf (pass/fail)</th>
<th>Concentrated Load of 200 lb. (pass/fail)</th>
<th>Concentrated Load of 400 lb. (pass/fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skylight 1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Impact Resistant Acrylic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skylight 2</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Fiberglass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skylight 3</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Impact Resistant Acrylic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

All three of the skylight domes tested met the requirements of the United States OSHA standard 1926.502.

INTERTEK TESTING SERVICES NA LTD.
Warnock Hersey

Reported by:
Jim Barzilay
Technician, Construction Products

Reviewed by:
Cam Robinson, P.Eng.
Manager, Construction Products

JB/rh
A uniformly distributed proof load test in progress – specimen shown is holding uniform load
(Skylight #2 - 6072-ES-CMG - Fiberglass)

Inverted skylight in frame after inverting due to a combination of uniform and concentrated loading
(Test #2 – Skylight #1 - 4896-HRS-CM – impact modified acrylic)
APPENDIX B
DATA SHEETS
Uniform and Point loading

Date: August 8, 2002
Client: Bristolite
Project: 3028364
Product: Skylights
Standard: ASTM E661-88(1997) and ASTM E72
Equipment: Dwyer 36" manometer 1230-36, S 21N, ID# 52613
5.5 HP 110 Volt Vacuum System
Artech 500 lb. load cell Serial # 200613, ID# 9-0489
Workbench software program
Data Shuttle Model # DS-1-8-TC-40 S/N 1171R403, ID# 9-0429

Bristolite Skylights Number 1, 4896-HRS-CM

<table>
<thead>
<tr>
<th>Displacement</th>
<th>Uniform Loading in psf</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>At start, no loading</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
</tr>
<tr>
<td>At start, with loading</td>
<td>2/16</td>
<td>3/16</td>
<td>3/16</td>
<td>4/16</td>
<td></td>
</tr>
<tr>
<td>After 5 min. of loading</td>
<td>2/16</td>
<td>3/16</td>
<td>4/16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At initial load release</td>
<td>0</td>
<td>0</td>
<td>1/16</td>
<td>1/16</td>
<td></td>
</tr>
</tbody>
</table>

Observations

Point Load of 200 lbs./5 min.

With no loading
The load depressed the skylight locally but there was no sign of collapse or failure

Point Load of 200 lbs./5 min. with uniform load of 40 psf
Point load depressed the skylight uniformly until it inverted. At that point it held in the inverted position for the remaining time. There was no signs of cracking.

Run up pressure to failure
No sign of cracking at 90.13 psf although the skylight is inverted and the metal frame is distorted. At that point the skylight passes the 200 lbs. point load. The skylight held at 86.84 psf with a maximum point load of 405 lbs. There was no sign of cracking in the inverted skylight.

Tested By:
Jim Barzilay
Technician, Construction Products
Uniform and Point loading

Date: August 8, 2002
Client: Bristolite
Project: 3028364
Product: Skylights
Standard: ASTM E661-88(1997) and ASTM E72
Equipment: Dwyer 36" manometer 1230-36, S 21N, ID# 52613
5.5 HP 110 Volt Vacuum System
Artech 500 pound load cell Serial # 200613, ID# 9-0489
Workbench software program
Data Shuttle Model # DS-1-8-TC-40 S/N 1171R403, ID# 9-0429

<table>
<thead>
<tr>
<th>Bristolite Skylights</th>
<th>Uniform Loading in psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Displacement</td>
<td></td>
</tr>
<tr>
<td>At start, no loading</td>
<td>0</td>
</tr>
<tr>
<td>At start, with loading</td>
<td>1/16</td>
</tr>
<tr>
<td>After 5 min. of loading</td>
<td>4/16</td>
</tr>
<tr>
<td>At initial load release</td>
<td>0</td>
</tr>
<tr>
<td>At 5 min. load released</td>
<td>0</td>
</tr>
</tbody>
</table>

Observations

Point Load of 200 lbs./5 min. (no uniform loading)
There was some deflection as the weight increased to 200 lbs. and then the point load stabilized and deflection ceased. After 5 minutes the load was increased to 275 lbs. At that time the deflection became greater than the stroke of the apparatus and loading was halted. There was no sign of cracks or punctures at the 275 lb. mark.

Point Load of 200 lbs./5 min. with uni-load of 7.6 in. H2O
The skylight accepted the 200 lb. load for the indicated 5 minute time frame. The deflection crept gradually and steadily for the time period. A maximum load of 462.8 lbs. was obtained without signs of cracks or puncture.

Run up pressure to failure
The skylight started to fail at 69.47 psf and finally inverted completely at 81.58 psf. It held at 89.47 psf. A load of 418 lbs. did not cause any more cracking than what appeared in the inversion process. The frame is quite distorted on the outside edge.

Tested By:
Jim Barzilay
Technician, Construction Products
Uniform and Point loading

Date: August 8, 2002
Client: Bristolite
Project: 3028364
Product: Skylights
Standard: ASTM E661-88(1997) and ASTM E72
Equipment: Dwyer 36" manometer 1230-36, S 21N, ID# 52613
5.5 HP 110 Volt Vacuum System
Artech 500 lb. load cell Serial # 200613, ID# 9-0489
Workbench software program
Data Shuttle Model # DS-1-8-TC-40 S/N 1171R403, ID# 9-0429

<table>
<thead>
<tr>
<th>Bristolite Skylights</th>
<th>Number 3, 6072-HRS-CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>Uniform Loading in psf</td>
</tr>
<tr>
<td>At start, no loading</td>
<td>0</td>
</tr>
<tr>
<td>At start, with loading</td>
<td>2/16 2/16 3/16 3/16</td>
</tr>
<tr>
<td>After 5 min. of loading</td>
<td>2/16 2/16 3/16 4/16</td>
</tr>
<tr>
<td>At initial load release</td>
<td>0 0 0 1/16</td>
</tr>
<tr>
<td>At 5 min. load released</td>
<td>0 0 0 1/16</td>
</tr>
</tbody>
</table>

Observations
Point Load of 200 lbs./5 min. (no uniform loading)
Loading causes deflection in skylight but does not cause inversion. At 200 lbs. the point load stops deflecting. I loaded to 310 lbs. where the apparatus failed. The skylight continued to deflect past 200 lbs.

Point Load of 200 lbs./5 min. with uni-load of 40 psf
The point load did not cause more deflection with uniform loading.

Run up pressure to failure
The skylight started to yield at 81.58 psf and after being fully inverted it held the 200 lb. point load for 5 min. at 91.05 psf. The point load was then increased to a maximum of 427.5 lbs., and there was no cracking or failure of the fully inverted skylight.

Tested By:
Jim Barzilay
Technician, Construction Products